
 

 446

SUBSTITUTIONAL STRUCTURES STABLE AGAINST THE FORMATION 
OF ANTIPHASE BOUNDARIES IN GRAPHENE DOPED WITH METAL. 

KINETICS OF LONG-RANGE ORDER 
 

Radchenko T.M., Tatarenko V.A. 
G.V. Kurdyumov Institute for Metal Physics, N.A.S. of the Ukraine 

36 Acad. Vernadsky Boulevard; UA-03680, Kyyiv-142, Ukraine 
Fax: 380 44 424 25 61      E-mails: taras.radchenko@gmail.com, tatar@imp.kiev.ua 

 
Introduction 

The crystal lattice of graphene (Fig. 1) is a 
two-dimensional ‘honeycomb’ structure of C 
atoms (so-called ‘two-dimensional carbon’) 
located at the vertexes of regular hexagons [1, 2]. 
Graphene doping with metal (Me) atoms may 
improve some of its physical properties for a wider 
range of applications. Such a doping changes 
particularly the electrical conductivity as well as 
the band structure strongly dependent on atomic 
order. Study of such effects becomes topical since 
graphene is not only the hardest material but also 
the best conductor [3]. 

Model 
Let us consider all possible stably-ordered 

substitutional structures of Me atoms doped in 
graphene lattice (in ordered C–Me solution) with 
superstructural stoichiometries: C3Me, C7Me, CMe. 
Probability-distribution functions for these 
(super)structures are determined by the method of 
static concentration waves [4, 5]. 

Interatomic interactions in C–Me lattice can be 
taken into consideration by means of the ‘mixing’ 
energies (or the ‘interchange’ energies) [4, 5]: 
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Here, p and q number the of sublattices, where 
corresponding atoms can be distributed; 
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pqW ′−R R  are 
the pair-wise interaction energies of C–C, Me–Me, 
C–Me pairs of atoms, respectively, located at the 
sites of p-th and q-th (p, q = 1, 2) sublattices within 
the unit cells with ‘origins’ (‘zero’ sites) at sites R 
and R′. 

For a statistical-thermodynamic description of 
the arbitrary-range interatomic-interactions (i.e. in 
all co-ordination shells), it is conveniently to apply 
the Fourier transformations for the elements of the 
‘mixing’-energies’ matrixes [4, 5], 
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Here, k is a wave vector in a two-dimensional 
reciprocal space (Fig. 2), which ‘generates’ 
corresponding (super)structure; 12 ( )w∗ k  is a 
complex conjugate to 12 ( )w k . Writing Hermitian 
matrix (2), the symmetry relations, 

11 22( ) ( )w w=k k  and 21 12( ) ( )w w∗=k k , are also 
taken into account. 

 
       Fig. 1. The lattice of graphene. ABCD—primitive 
unit cell, a1 and a2—basis translation vectors of the 
lattice, a—its translation parameter, a0—distance 
between the nearest neighbour sites. Circles denote the 
first three co-ordination shells with respect to the origin 
(at the site A) of the oblique co-ordinates.  

 
       Fig. 2. The first Brillouin zone of the reciprocal 
space of graphene lattice (Γ, M, K⎯its high-symmetry 
points); 1 ,∗a  2

∗a —fundamental translation vectors of the 
reciprocal lattice. 
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The ‘mixing’ energies and corresponding 
eigenvalues of the matrix (2), 

1 11 12( ) ( ) ( ) ,w wλ = +k k k  2 11 12( ) ( ) ( ) ,w wλ = −k k k  

entering into expressions for the configurational 
free energy obtained within the self-consistent field 
approximation [4, 5] define the statistical 
thermodynamics of graphene-based structures. 

Results 
Expressing eigenvalues of the matrix (2) in 

terms of the ‘mixing’ energies w1, w2, w3, etc. 
inside the 1-st, 2-nd, 3-rd, etc., co-ordination 
shells, respectively, one can reveal unpredictability 
of some ordered structures (of C2Me and C5Me 
type) ‘generated’ by the star of wave vector 
corresponding to K point (see Fig. 2) at nonzero 
temperatures (at least, with short-range interatomic 
interactions). 

The regions for allowable energy parameters, 
w2/w1 and w3/w1, providing stability (against the 
antiphase shifts) of the corresponding ordered 
states are presented in Fig. 3. For instant, the M 
region (in Fig. 3) ‘indicates’ the tendency of a  
C–Me system to form a state of order concerned 
with the M-point wave-vector star (see also Fig. 2). 

Atomic-ordering kinetics can be described by the 
microdiffusion Onsager-type differential equations 
[4, 5]. Curves in Fig. 4 describe the time dependence 
of the long-range order parameters {ησ

ℵ} for the 
structures with CMe, C7Me, C3Me stoichiometries at 
the fixed reduced temperature and ratios between the 
energy parameters, λ2(0), λ1(kM), λ2(kM), and, 
particularly, between w2/w1 and w3/w1. Inasmuch as 
the intrasublattice and intersublattice ‘mixing’ 
energies are competitively different, the kinetics 
curves for long-range order parameters of the 
structures described by two or three parameters can 
be significantly nonmonotonic (Fig. 4b). 
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      Fig. 3. Energy regions of the stability of ordered 
graphene-based binary solution states; (а) w1 > 0, (b) 
w1 < 0. 

 
(a)                                        (b) 

       Fig. 4. The reduced-time (t*) dependence of the 
long-range order parameters for CMe, C7Me, C3Me 
structures. The reduced temperature 
T* = kBT/|λ2(kM)| = 0.1 (λ2(kM) < 0); λ2(0)/λ2(kM) = 5/7, 
λ1(kM)/λ2(kM) = 5/6 (that corresponds to w2/w1 = 0.5, 
w3/w1 = 0.3) (а); λ2(0)/λ2(kM) = −5/8, λ1(kM)/λ2(kM) = 5/6 
(w2/w1 = 0.9, w3/w1 = 0.4) (b). 


